

Inhalt

1	Komplexe Funktionen einer komplexen Variablen			1
	1.1 Schreibweise			1
	1.2	Prob	lem der Darstellung	1
	1.3 Bei		piele	1
		1.3.1	Translation	1
		1.3.2	Zentrische Streckung	2
		1.3.3	Drehung	3
		1.3.4	Drehstreckung	3
		1.3.5	Allgemeine lineare Funktion	4
		1.3.6	Quadratfunktion	4
		1.3.7	Exponentialfunktion	8
		1.3.8	Die komplexe Kosinus- und Sinusfunktion	11
		1.3.9	Konjugieren	14
2	Differenziation einer komplexen Funktion		15	
	2.1	Begr	iff der Ableitung	15
		2.1.1	Reelle Funktionen	15
		2.1.2	Ableitung einer komplexen Funktion	16
	2.2	Beist	piele	16
		2.2.1	Quadratfunktion	16
		2.2.2	Konjugieren	17
	2.3	Bedi	ngungen für Differenzierbarkeit	17
		2.3.1	Die CAUCHY-RIEMANNschen Differenzialgleichungen	17
		2.3.2	Reelle Darstellung	18
		2.3.3	Begriffe und Rechenregeln	19
		2.3.4	Beispiele	19
	2.4	Geor	netrische Bedeutung der Differenzierbarkeit	21
	2.5	Zusa	mmenfassung	23

2005 Probeausgabe2006 Ergänzungen. Formel-Editor revidiert. Grafische Überarbeitung. MathType

last modified: 13. März 2006

Hans Walser Mathematisches Institut, Rheinsprung 21, 4051 Basel www.math.unibas.ch/~walser hwalser@bluewin.ch

1 Komplexe Funktionen einer komplexen Variablen

1.1 Schreibweise

$$w = f(z)$$

Die Funktion f ordnet der komplexen Zahl z = x + iy die komplexe Zahl w = u + iv zu. Der Definitionsbereich von f ist also eine Teilmenge von C. Der Wertebereich ist ebenfalls C. C ist die zweidimensionale *Gaußsche* Zahlenebene.

1.2 Problem der Darstellung

Erinnerung an reellwertige Funktionen reeller Variablen y = f(x):

Darstellung im Reellen

Die Zuordnung kann punktweise in $R \times R$ dargestellt werden. Das entsprechende Verfahren für komplexwertige Funktionen komplexer Variablen bräuchte einen *vierdimensionalen* Raum C×C. Auf dem Papier müssen wir Definitionsbereich (Urbildebene, z-Ebene) und Wertebereich (Bildebene, w-Ebene) *getrennt* darstellen:

Abbildung im Komplexen

Die Funktion w = f(z) vermittelt eine Abbildung der z-Ebene in die w-Ebene.

1.3 Beispiele

1.3.1 Translation

$$w = f(z) = z + b; \quad b = r + is$$

Mit der reellen Schreibweise z = x + iy und w = u + iv ergibt sich:

$$w = u + iv = x + iy + r + is = x + r + i(y + s)$$

Trennung in Real- und Imaginärteil ergibt:

Hans Walser: Komplexe Funktionen

$$u = x + r$$
$$v = y + s$$

Die Abbildung ist somit eine Translation mit dem Translationsvektor:

$$\vec{b} = \begin{bmatrix} r \\ s \end{bmatrix}$$

Die Abbildung hat keinen Fixpunkt.

1.3.2 Zentrische Streckung

$$w = f(z) = az; \quad a \in \mathbb{R}$$

Mit der reellen Schreibweise z = x + iy und w = u + iv ergibt sich:

$$u + iv = a(x + iy) = ax + iay$$

Trennung in Real- und Imaginärteil ergibt:

$$u = ax$$

v = ay

Die Abbildung ist also eine zentrische Streckung vom Ursprung aus mit dem Streckungsfaktor a.

1.3.3 Drehung

$$w = f(z) = az; \quad a \in \mathbb{C}; \quad |a| = 1$$

In diesem Beispiel sei $a \in \mathbb{C}$, aber |a|=1, das heißt $a = \cos(\phi) + i \sin(\phi)$. Mit der reellen Schreibweise z = x + iy und w = u + iv ergibt sich:

$$w = u + iv = (\cos(\phi) + i\sin(\phi))(x + iy) = x\cos(\phi) + iy\cos(\phi) + ix\sin(\phi) - y\sin(\phi)$$

Trennung in Real- und Imaginärteil ergibt:

$$u = x\cos(\phi) - y\sin(\phi)$$
$$v = x\sin(\phi) + y\cos(\phi)$$

Die Abbildung ist eine *Drehung* um den Ursprung mit dem Drehwinkel $\phi = \arg(a)$.

Drehung um den Ursprung

1.3.4 Drehstreckung

$$w = f(z) = az$$

Nun sei $a \in \mathbb{C}$ beliebig, also $a = |a|(\cos(\phi) + i\sin(\phi)) = |a|e^{i\phi}$. Die Abbildung ist eine *Drehstreckung* mit dem Zentrum im Ursprung, dem Streckungsfaktor |a| und dem Drehwinkel $\phi = \arg a$.

Drehstreckung mit Zentrum im Ursprung

1.3.5 Allgemeine lineare Funktion

$$w = f(z) = az + b; \quad a, b \in \mathbb{C}$$

Dies ist die allgemeine *lineare Abbildung*; das reelle Analogon y = f(x) = mx + q liefert eine Gerade. Welche Abbildung liegt im Komplexen vor? Wir berechnen zunächst die *Fixpunkte*. Die Fixpunktbedingung w = z liefert z = az + b und damit den Fixpunkt:

$$z = \frac{b}{1-a}$$

Durch die Koordinatentransformation

$$\hat{z} \coloneqq z - \frac{b}{1-a}$$
; $\hat{w} \coloneqq w - \frac{b}{1-a}$

werden je die Ursprünge in den Fixpunkt verschoben. Wegen

$$z = \hat{z} + \frac{b}{1-a}$$
; $w = \hat{w} + \frac{b}{1-a}$

ist

$$\hat{w} + \frac{b}{1-a} = a \left(\hat{z} + \frac{b}{1-a} \right) + b = a\hat{z} + \frac{ab}{1-a} + \frac{b-ab}{1-a} = a\hat{z} + \frac{b}{1-a}$$

also $\hat{w} = a\hat{z}$. Die Abbildung w = f(z) = az + b ist somit eine *Drehstreckung* mit dem Zentrum $\frac{b}{1-a}$, dem Streckungsfaktor |a| und dem Drehwinkel $\phi = \arg(a)$.

Drehstreckung allgemein

1.3.6 Quadratfunktion

$$w = f(z) = z^2$$

In der reellen Schreibweise ergibt sich:

$$u + iv = (x + iy)^{2} = x^{2} + 2ixy - y^{2}$$

Trennung in Real- und Imaginärteil ergibt:

$$u = x^2 - y^2$$
$$v = 2xy$$

Wir berechnen nun die Bilder der achsenparallelen Geraden der z-Ebene, also die Bilder des "Karo-Netzes" in der z-Ebene. Für die senkrechten Geraden x = const. = c erhalten wir

$$u = c^2 - y^2$$
$$v = 2cy$$

Aus der zweiten Gleichung folgt $y = \frac{v}{2c}$, und durch Einsetzen in die erste Gleichung ergibt sich:

$$u = c^2 - \frac{v^2}{4c^2}$$

Dies ist die Gleichung einer liegenden, nach links offenen Parabel.

Bild einer senkrechten Geraden

Wir zeigen nun, dass diese Parabel den Brennpunkt im Ursprung hat. Die vom Brennpunkt ausgehenden Strahlen werden von der Parabel so reflektiert, dass die ausfallenden Strahlen parallel zur (negativen) *u*-Achse verlaufen (Prinzip des Scheinwerfers).

Reflexion der vom Brennpunkt auslaufenden Strahlen

Um zu zeigen, dass der Ursprung der Brennpunkt ist, genügt es, zu zeigen, dass die vom Ursprung ausgehenden senkrechten Strahlen (d.h. u=0) von der Parabel rechtwinklig reflektiert werden. Dazu wiederum muss gezeigt werden, dass die Parabel die *v*-Achse unter einem Winkel von $\frac{\pi}{4}$ schneidet. Für den Schnittpunkt der *v*-Achse mit der Parabel

$$u = c^2 - \frac{v^2}{4c^2}$$

erhalten wir aus u = 0:

$$0 = c^{2} - \frac{v^{2}}{4c^{2}}$$
$$4c^{4} = v^{2}$$
$$v = \pm 2c^{2}$$

Weiter ist

$$\frac{\mathrm{d}u}{\mathrm{d}v} = -\frac{2v}{4c^2}$$

also

$$\frac{\mathrm{d}u}{\mathrm{d}v}(\pm 2c^2) = \pm 1$$

Damit schneidet die Parabel die *v*-Achse unter Winkeln von $\pm \frac{\pi}{4}$, und der Ursprung ist ihr Brennpunkt. Die Schar paralleler Geraden x = const. = c wird auf eine Schar von Parabeln mit gemeinsamem Brennpunkt im Ursprung abgebildet. Parabeln mit gemeinsamem Brennpunkt heißen *konfokal*.

Analog ergibt sich für die Bilder der waagrechten Geraden y = const. = d die Gleichung:

$$u = \frac{v^2}{4d^2} - d^2$$

Dies ist die Gleichung einer liegenden, nach rechts offenen Parabel mit Brennpunkt im Ursprung.

Bild einer waagrechten Geraden

Das achsenparallele Netz der z-Ebene wird also auf ein Netz konfokaler Parabeln der w-Ebene abgebildet.

Netz konfokaler Parabeln

Bemerkungen:

• Wegen $(-z)^2 = z^2$ ist die Abbildung nicht bijektiv. Durch die Einschränkung auf eine Halbebene wird die Abbildung bijektiv. Illustration mit Maple-Programm:

> with(plots):

conformal(z,z=0-2*I..2+2*I,grid=[6,11], scaling=constrained);

conformal(z^2,z=0-2*I..2+2*I,grid=[6,11], scaling=constrained);

Die Halbebene wird auf das Parabelnetz abgebildet

• Dynamische Vorstellung: "Herumbiegen" der rechten Halbebene

"Herumbiegen" der rechten Halbebene

- Die Bilder der achsenparallelen Geraden der z-Ebene in der w-Ebene heißen Netzlinien (oft auch Parameterlinien).
- Berechnung der Schnittwinkel zweier Netzlinien:

Reflexion an zwei Parabeln

Wir denken uns einen vom Brennpunkt (Ursprung) ausgehenden Lichtstrahl, der von je einer Parabel jeder Schar reflektiert wird. Der Reflexionswinkel bei der einen Parabel sei α , bei der anderen Parabel β . Aus der Figur lesen wir ab: $\beta + \beta + \alpha + \alpha = \pi$ und damit $\alpha + \beta = \frac{\pi}{2}$. Nun ist aber $\alpha + \beta$ der Winkel zwischen den beiden Parabeln; das Parabelnetz ist somit *orthogonal*. Die Orthogonalität ist allerdings im Ursprung gestört.

- Der Ursprung ist eine Singularität (Ausnahmestelle) des Netzes.
- Die Bilder der Karos der *z*-Ebene sind (angenähert) ebenfalls Quadrate. GAUSS sprach von einer "Abbildung durch kleinste Quadrate"

1.3.7 Exponentialfunktion

$$w = f(z) = e^{z}$$

Wir erhalten die reelle Darstellung:

$$u + iv = e^{x+iy} = e^x e^{iy} = e^x (\cos(y) + i\sin(y))$$

Trennung in Real- und Imaginärteil ergibt:

$$u = e^{x} \cos(y)$$
$$v = e^{x} \sin(y)$$

Für die Netzlinien erhalten wir aus den senkrechten Geraden x = const. = c:

$$u = e^{c} \cos(y)$$
$$v = e^{c} \sin(y)$$

Dies ist ein Kreis um den Ursprung mit dem Radius e^c . Für c = 0 ergibt sich der Einheitskreis. Für die waagrechten Geraden y = const. = d ergibt sich

$$\frac{v}{u} = \frac{\sin(d)}{\cos(d)} = \tan(d)$$

also $v = u \tan(d)$; dies ist ein Strahl vom Ursprung aus mit dem Steigungswinkel d.

Netz der Exponentialabbildung

Maple-Programm:

> with(plots):

conformal(z, z=-2*Pi-Pi*I..2*Pi+Pi*I,grid=[37,19], scaling=constrained); conformal(exp(z), z=-2*Pi-Pi*I..2*Pi+Pi*I,grid=[37,19], scaling=constrained);

Maple-Programm

Diagonalen im Netz der Exponentialfunktion?

Bemerkungen:

- Das Netz ist orthogonal mit einer Singularität im Ursprung.
- Wegen $e^{i(y+2\pi)} = e^{iy}$ ist die Abbildung nicht bijektiv; z und $z + 2\pi i$ (allgemein: z und $z + 2k\pi i$, $k \in \mathbb{Z}$) haben dasselbe Bild. Durch Einschränken der z-Ebene auf einen waagrechten Streifen der Höhe $2\pi i$ ergibt sich eine bijektive Abbildung.

Das Bild des Streifens

1.3.8 Die komplexe Kosinus- und Sinusfunktion

Aus der Eulerschen Formel

$$e^{it} = \cos(t) + i\sin(t)$$

ergibt sich:

$$e^{iz} = \cos(z) + i\sin(z)$$
$$e^{-iz} = \underbrace{\cos(-z)}_{\cos(z)} + i\underbrace{\sin(-z)}_{-\sin(z)} = \cos(z) - i\sin(z)$$

Durch Addition beziehungsweise Subtraktion erhalten wir:

$$\cos(z) = \frac{1}{2} \left(e^{iz} + e^{-iz} \right)$$
$$\sin(z) = \frac{1}{2i} \left(e^{iz} - e^{-iz} \right)$$

- Damit können wir die Funktionen Kosinus und Sinus im Komplexen definieren.
- Die Formeln habe eine starke Ähnlichkeit mit den hyperbolischen Funktionen, es müssen alle i's weggelassen werden:

$$\cosh(z) = \frac{1}{2} \left(e^z + e^{-z} \right)$$
$$\sinh(z) = \frac{1}{2} \left(e^z - e^{-z} \right)$$

Wir versuchen, den komplexen Kosinus in Real- und Imaginärteil aufzuteilen:

$$w = u + iv = \cos(z) = \frac{1}{2} (e^{iz} + e^{-iz}) = \frac{1}{2} (e^{i(x+iy)} + e^{-i(x+iy)})$$

$$= \frac{1}{2} (e^{ix-y} + e^{-ix+y}) = \frac{1}{2} (e^{ix} e^{-y} + e^{-ix} e^{y})$$

$$= \frac{1}{2} (e^{-y} (\cos(x) + i\sin(x)) + e^{y} (\cos(-x) + i\sin(-x)))$$

$$= \frac{1}{2} (e^{-y} (\cos(x) + i\sin(x)) + e^{y} (\cos(x) - i\sin(x)))$$

$$= \cos(x) \frac{1}{2} (e^{-y} + e^{y}) + i\sin(x) \frac{1}{2} (e^{-y} - e^{y})$$

$$= \cos(x) \cosh(y) - i\sin(x) \sinh(y)$$

Somit erhalten wir:

 $u = \cos(x)\cosh(y)$ $v = -\sin(x)\sinh(y)$

Für die Berechung der Netzlinien setzen wir zunächst y = konst. = d und erhalten:

$$u = \cos(x)\cosh(d)$$
$$v = -\sin(x)\sinh(d)$$

Dies ist die Parameterdarstellung einer Ellipse.

Zwischenbemerkung zur Ellipse: Aus der Kreisdarstellung

$$u = \cos(t)$$
$$v = \sin(t)$$

erhalten wir durch Streckung in der u-Richtung mit dem Faktor a und Streckung in der v-Richtung mit dem Faktor b die Ellipsendarstellung:

$$u = a\cos(t)$$
$$v = b\sin(t)$$

Aus x = konst. = c erhalten wir:

$$u = \cos(c)\cosh(y)$$
$$v = -\sin(c)\sinh(y)$$

Dies ist die Parameterdarstellung einer Hyperbel.

Das Bildnetz besteht also aus Ellipsen und Hyperbeln.

Mit folgendem Programm (Maple) ergibt sich das Bildnetz:

> with(plots):

conformal(z,z=-Pi/2*I..Pi+Pi/2*I,grid=[9,9], scaling=constrained);

conformal(cos(z),z=-Pi/2*I..Pi+Pi/2*I,grid=[9,9], scaling=constrained);

Bildnetz der komplexen Kosinus-Funktion

Hans Walser: Komplexe Funktionen

Bemerkungen:

Die Punkte $(\pm 1, 0)$ sind gemeinsame Brennpunkte aller Ellipsen und Hyperbeln.

Das Netz ist orthogonal und besteht aus kleinen "Quadraten".

Die Funktionen cos(x) und sin(x) sind 2π -periodisch, zudem ist cosh(y) eine gerade und damit nicht bijektive Funktion. Wir müssen uns in der z-Ebene daher einschränken auf einen senkrechten Streifen der Breite π .

Der oben verwendete Streifen wird bei der Abbildung "auf den Kopf gestellt".

"Janz weit draußen" ergibt sich kaum mehr ein Unterschied zum Kreisnetz der Exponentialfunktion.

Annäherung ans Kreisnetz

1.3.9 Konjugieren

$$w = f(z) = \overline{z}; \quad \overline{z} = x - iy$$

Diese Abbildung ist die Spiegelung an der *x*-Achse.

Spiegelung an der x-Achse

2 Differenziation einer komplexen Funktion

2.1 Begriff der Ableitung

2.1.1 Reelle Funktionen

Eine reelle Funktion y = f(x) heißt differenzierbar an der Stelle *x*, wenn der Grenzwert

$$f'(x) \coloneqq \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$

existiert.

Der Nachbarpunkt $x + \Delta x$ kann dabei links oder rechts von x liegen. Daraus ergibt sich näherungsweise: $\Delta y \approx f'(x)\Delta x$. Im lokalen dx, dy-Koordinatensystem mit dem Ursprung im Punkt (x, f(x)) ergibt sich für die Tangente an den Funktionsgraphen die Gleichung dy = f'(x)dx.

Lokales dx,dy-Koordinatensystem

Die Funktion y = f(x) kann in der Umgebung des Punktes (x, f(x)) durch die lineare Funktion dy = f'(x)dx approximiert werden.

Ein Problem stellt sich bei einem Funktionsgraphen mit einer "Spitze".

Funktionsgraph mit "Spitze"

Hier existiert keine durchgehende Tangente. Die Funktion ist an dieser Stelle nicht differenzierbar; es gibt für diese Stelle keine lineare Approximation.

2.1.2 Ableitung einer komplexen Funktion

Eine komplexe Funktion w = f(z) heißt *differenzierbar an der Stelle z*, falls der Grenzwert

$$\lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}$$

unabhängig von der Art der Annäherung an z existiert. Dieser Grenzwert heißt dann die Ableitung an der Stelle z.

Mit der Bezeichnung $\Delta w = f(z + \Delta z) - f(z)$ ergibt sich:

$$w' = f' = \lim_{\Delta z \to 0} \frac{\Delta w}{\Delta z}$$

2.2 Beispiele

2.2.1 Quadratfunktion

$$w = f(z) = z^2$$

Es ist

$$\lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z} = \lim_{\Delta z \to 0} \frac{(z + \Delta z)^2 - z^2}{\Delta z}$$
$$= \lim_{\Delta z \to 0} \frac{z^2 + 2z\Delta z + \Delta z^2 - z^2}{\Delta z} = \lim_{\Delta z \to 0} (2z + \Delta z) = 2z$$

Somit ist f'(z) = 2z; es gilt dieselbe Ableitungsregel wie im Reellen.

Bemerkungen:

f'(0) = 0. Wir werden sehen, dass das Verschwinden der Ableitung mit der Singularität des Netzes in z = 0 zusammenhängt.

Allgemein hat die Funktion $w = f(z) = z^n$ die Ableitung $f'(z) = nz^{n-1}$.

2.2.2 Konjugieren

$$w = f(z) = \overline{z}$$

Wir werden sehen, dass die Funktion $w = f(z) = \overline{z} = x - iy$ nicht differenzierbar ist. Dazu bilden wir den Grenzwert lim auf zwei verschiedenen Wegen: $\Delta z \rightarrow 0$

Zwei verschiedene Wege

 $\Delta z \ reell$ (Annäherung auf einer Parallelen zur x-Achse.) Wegen $\Delta z = \Delta x$ ist $\overline{\Delta z} = \Delta x$. Damit erhalten wir für den Grenzwert:

$$\lim_{\Delta z \to 0} \frac{\Delta w}{\Delta z} = \lim_{\Delta x \to 0} \frac{\Delta x}{\Delta x} = 1$$

 Δz reinimaginär (Annäherung auf einer Parallelen zur y-Achse.). Wegen $\Delta z = i\Delta y$ ist $\overline{\Delta z} = -i\Delta y$. Damit erhalten wir für den Grenzwert:

$$\lim_{\Delta z \to 0} \frac{\Delta w}{\Delta z} = \lim_{\Delta y \to 0} \frac{-i\Delta y}{i\Delta y} = -1$$

Der Grenzwert ist abhängig von der Art der Annäherung an z; die Funktion $w = f(z) = \overline{z}$ ist also *nicht* differenzierbar.

2.3 Bedingungen für Differenzierbarkeit

2.3.1 Die CAUCHY-RIEMANNschen Differenzialgleichungen

Für das Differential df einer komplexen Funktion f gilt:

$$df = f'dz = f'(dx + idy) = f'dx + if'dy$$

Wegen z = x + iy kann f(z) auch als komplexwertige Funktion der rein reellen Variablen x und y geschrieben werden. Damit ergibt sich für das Differential:

$$df = f_x dx + f_y dy$$

Durch Vergleich folgt:

$$f' = f_x$$
$$if' = f_y$$

Daraus ergibt sich die CAUCHY-RIEMANNsche Differenzialgleichung:

 $f_y = i f_x$

2.3.2 Reelle Darstellung

Aus w = f(z) = u(z) + iv(z) ergibt sich:

$$f_x = u_x + iv_x$$
$$f_y = u_y + iv_y$$

Aus $f_v = i f_x$ folgt:

$$u_v + iv_v = i(u_x + iv_x) = iu_x - v_x$$

Der Vergleich von Real- und Imaginärteil liefert die reelle Darstellung der CAUCHY-RIEMANNschen Differenzialgleichungen:

 $u_x = v_y$ $u_y = -v_x$

Bemerkung: Nach unserer Herleitung sind die CAUCHY-RIEMANNschen Differenzialgleichungen *notwendige* Bedingungen für Differenzierbarkeit. Man kann aber zeigen, dass sie auch *hinreichende* Bedingungen sind.

Augustin-Louis CAUCHY, 1789 - 1857

Augustin-Louis CAUCHY lived from 1789 to 1857. CAUCHY pioneered the study of analysis, both real and complex, and the theory of permutation groups. He also researched in convergence and divergence of infinite series, differential equations, determinants, probability and mathematical physics.

Bernhard RIEMANN, 1826 - 1866

Bernhard RIEMANN lived from 1826 to 1866 RIEMANN's ideas concerning geometry of space had a profound effect on the development of modern theoretical physics. He clarified the notion of integral by defining what we now call the Riemann integral.

2.3.3 Begriffe und Rechenregeln

Eine *differenzierbare* Funktion einer komplexen Variablen wird als *analytische* (oder *holomorphe*) Funktion bezeichnet. Es gilt (ohne Beweis für die eine Richtung):

w = f(z) analytisch $\Leftrightarrow f_y = if_x \Leftrightarrow (u_x = v_y \text{ und } u_y = -v_x)$

Für analytische Funktionen gelten dieselben Differenzierbarkeitsregeln wie für reelle Funktionen:

$$(f+g)' = f' + g'$$
$$(\lambda f)' = \lambda f'$$
$$(fg)' = f'g + fg'$$

2.3.4 Beispiele

2.3.4.1 Quadratfunktion

$$w = f(z) = z^2$$

Reelle Darstellung:

$$u = x^2 - y^2$$
$$v = 2xy$$

Daraus ergibt sich:

$$u_x = 2x \qquad v_y = 2x$$
$$u_y = -2y \qquad v_x = 2y$$

Die CAUCHY-RIEMANNschen Differenzialgleichungen sind erfüllt; die Funktion ist differenzierbar.

Hans Walser: Komplexe Funktionen

2.3.4.2 Exponential funktion

 $w = f(z) = e^{z}$

Reelle Darstellung:

$$u = e^x \cos y$$
$$v = e^x \sin y$$

Daraus ergibt sich:

$$u_x = e^x \cos y$$
 $v_y = e^x \cos y$
 $u_y = -e^x \sin y$ $v_x = e^x \sin y$

Die CAUCHY-RIEMANNschen Differenzialgleichungen sind erfüllt; die Funktion ist differenzierbar.

Bemerkung: Wegen $f' = f_x = u_x + iv_x = e^x(\cos y + i \sin y) = e^z$ folgt $(e^z)' = e^z$. Es gilt also dieselbe Ableitungsregel wie im Reellen.

 $w = f(z) = \overline{z}$

u = xv = -y

2.3.4.3 Konjugieren

Reelle Darstellung:

$$u_x = 1$$
 $v_y = -1$

$$u_{v} = 0 \quad v_{x} = 0$$

Die erste CAUCHY-RIEMANNsche Differenzialgleichung ist *nicht* erfüllt; die Funktion ist nicht differenzierbar.

2.4 Geometrische Bedeutung der Differenzierbarkeit

Im Reellen bedeutet Differenzierbarkeit dass die Funktion lokal durch eine *lineare* Funktion ersetzt werden kann:

Die Funktion kann lokal linearisiert werden

Durch Verschieben des Nullpunktes in den Punkt $(x_0, f(x_0))$ ergibt sich die lineare Funktion $dy = f'(x_0)dx$.

Im Komplexen können wir analog verfahren. Aus

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

ergibt sich:

$$f'(z_0)\big(z-z_0\big)\approx f(z)-f(z_0)$$

Daraus folgt:

$$f(z) \approx f(z_0) + f'(z_0)(z - z_0) = \underbrace{f'(z_0)}_{a} z + \underbrace{f(z_0) - f'(z_0)z_0}_{b} = az + b$$

Also ist $f(z) \approx az + b$. Nun ist aber die lineare Funktion w = az + b geometrisch eine Drehstreckung. Daraus folgt:

Eine analytische Funktion mit $f'(z_0) \neq 0$ ist lokal eine *Drehstreckung* mit dem Streckungsfaktor $|f'(z_0)|$ und dem Drehwinkel $\phi = \arg(f'(z_0))$.

Wegen der lokalen Ähnlichkeit bleiben Winkel erhalten; eine analytische Funktion ist also eine *winkeltreue (konforme)* Abbildung. Da keine Spiegelung auftritt, haben wir sogar eine *gleichsinnige* Konformität.

Von diesem Satz gilt auch die *Umkehrung*; eine gleichsinnig konforme Abbildung ist differenzierbar. Für den Beweis der Umkehrung gehen wir von einer Funktion w = f(z) oder reell u(x, y), v(x, y) aus, die eine gleichsinnig konforme Abbildung beschreiben soll.

Infinitesimal kleines Quadrat

Ein infinitesimal kleines "Häuschen" (achsenparalleles Quadrat der Seitenlänge dt) wird auf ein Viereck abgebildet, das wegen der Konformität wieder vier rechte Winkel hat, also ein Rechteck ist. Da aber auch der orthogonale Schnittwinkel der Diagonalen erhalten bleibt, ist das Bildviereck sogar ein Quadrat.

Bildviereck eine Quadrat

Mit $d\vec{z} = \begin{bmatrix} dx \\ dy \end{bmatrix}$ und $d\vec{w} = \begin{bmatrix} du \\ dv \end{bmatrix}$ ergibt sich wegen

Hans Walser: Komplexe Funktionen

$$du = u_x dx + u_y dy$$
$$dv = v_x dx + v_y dy$$

die Beziehung:

$$\mathbf{d}\vec{w} = \begin{bmatrix} u_x & u_y \\ v_x & v_y \end{bmatrix} \mathbf{d}\vec{z}$$

In unserem Fall ist $d\vec{z}_1 = \begin{bmatrix} dt \\ 0 \end{bmatrix}$ und $d\vec{z}_2 = \begin{bmatrix} 0 \\ dt \end{bmatrix}$, und somit $d\vec{w}_1 = \begin{bmatrix} u_x \\ v_x \end{bmatrix} dt$ und

 $d\vec{w}_2 = \begin{bmatrix} u_y \\ v_y \end{bmatrix} dt$. Infolge der Konformität ist aber $d\vec{w}_2$ der um $+\frac{\pi}{2}$ gedrehte Vektor $d\vec{w}_1$, also $d\vec{w}_2 = \begin{bmatrix} -v_x \\ u_x \end{bmatrix} dt$. Deshalb folgt durch Vergleich

$$u_v = -v_x$$
 und $v_v = u_x$.

Die Abbildung erfüllt also die CAUCHY-RIEMANNschen Differenzialgleichungen und ist damit differenzierbar.

2.5 Zusammenfassung

Bemerkungen

- Das Netz einer analytischen Funktion ist wegen der Konformität immer orthogonal.
- GAUSS nannte konforme Abbildungen auch "Abbildungen durch kleinste Quadrate".
- Konforme Abbildungen gestatten, aus einer winkeltreuen Karte (die als *z*-Ebene interpretiert wird) eine zweite, ebenfalls winkeltreue Karte (*w*-Ebene) herzustellen.